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The linearized equations for the final stage of decay of turbulence in a stably stratified 
fluid are solved by three-dimensional Fourier transformation. For large Prandtl 
number, slowly decaying almost-horizontal modes of motion are identified. It is 
argued that these modes explain the experimental observation that patches of 
turbulence eventually settle out into a set of approximately horizontal striations. The 
most persistent vertical wavelength for a given geometry is determined and compared 
with quantitative observations from a set of experiments. 

1. Introduction 
The decay of turbulence in a stratified fluid is readily visualized by a shadowgraph 

(or schlieren) image of the flow. There are many such observations in the literature 
(see e.g. Pao 1973; Thorpe 1973; Lange 1974; Koop & Browand 1979; Lin & Pao 
1979; Linden 1980), and they all show essentially similar things. Whatever the 
method of generating the turbulence, the initially chaotic pattern produced as the 
turbulence distorts the density stratification eventually settles out into a set of 
approximately horizontal striations. At this stage the motions are weak and the 
striations then remain without any apparent change in form until they eventually 
disappear. I n  this final stage of decay Lange (1974) found that density fluctuations 
decay faster than would occur by molecular diffusion alone. He argued that the 
density field must be driving slow viscously dominated motions. Streak photographs 
of aluminium particles, such as shown in figure 3 of Linden (1980), show that within 
this banded structure the motion is aligned with the striations. 

The concept of the final stage of decay of turbulence in a homogeneous field was 
introduced by Batchelor & Townsend (1948a,b). In  this last stage of motion after 
a turbulent event, internal Reynolds numbers are small and so the Navier-Stokes 
equations may be linearized, with quadratic inertia terms being ignored. They 
pointed out that  this motion is not turbulent in the usual sense, as there is no cascade 
of energy from large to  small scales and locally the flow is stable and laminar. 
However, the motion is the remnant from an initial truly turbulent motion and is 
disordered on a large scale. 

In  this paper we investigate the linearized equations of motion in the presence of 
a mean vertical density gradient. The introduction of stable stratification allows the 
transfer of fluid energy between kinetic and potential forms as well as its dissipation 
by viscosity. This is found to have interesting consequences for the type of motion 
that can occur, A very slowly decaying mode of motion is found giving nearly 
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horizontal cellular motions. It is argued that these modes describe the quasi-horizontal 
striations observed in decaying stratified turbulence. Simple experiments were 
performed to measure the vertical scale of these striations in a number of situations. 
Predictions of the vertical scales giving the slowest rates of decay were found to agree 
with the observed scales. 

2. Linear equations and solution 
We take rectangular Cartesian coordinates with the z-axis vertical and gravity 

given by -98, where 8 is a unit vector in the positive z-direction. We make the 
Boussinesq approximation, neglecting density differences except in the buoyancy 
term. We consider a linear mean density stratification given by p ( z )  = po( 1 -g-’N2z) 
with constant buoyancy frequency N .  Here p ( z )  denotes the density averaged over 
the 2- and y-directions for given z ,  and po is a representative density, whilst p’ will 
be used to denote the density perturbation from its mean value. The velocity 
components u = (u, v, w )  are all small as we are linearizing about a state of rest. With 
p denoting the perturbation of pressure from its hydrostatic value the Navier-Stokes 
equations reduce to 

au 1 P‘ 
at Po 
- = --Wp-g--L+vV2u, Po 

where v is the kinematic viscosity. For an incompressible fluid 

w-u  = 0. (2) 

A fifth equation is provided by the linearized density-perturbation transport 
equation 

where K is the diffusivity of the scalar (usually heat or a solute) providing the basic 
stratification. 

We solve this set of equations by introducing three-dimensional Fourier transforms 
defined by 

where k = ( k l ,  k,, k3) and k:+ ki + ki = k2.  Substitution of (4) in (1)-(3) and then 
solving for & gives 

(:+ vk2)  (:+ K k 2 )  &+ N2 (v) & = 0. 

This equation has solutions 

&(k, t )  = A(k)  cult + B ( k )  eUzt, 

for arbitrary A ( k ) ,  B(k ) ,  where 

and we have introduced a reduced frequency 
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1-v 
FIQURE 1. Schematic diagram of slowly decaying modes. 

which is the frequency of an undamped (inviscid) internal gravity wave with 
wavevector k ,  making an angle 8 with the horizontal (see figure 1). Note that the 
real parts of ( T ~  and u2 are always negative, so that in all cases .Li, decreases with time. 
The result (6) may be compared with the result for an unstratified fluid 

&(k, t )  = A(k)  ecUkZt. 

The perturbation density @’ also satisfies ( 5 ) ,  and the solution corresponding to  (6) 
is just 

The horizontal velocity components satisfy the third-order equation 

The third solution of this equation, different from those of (5), corresponds to  purely 
horizontal motions decoupled from all buoyancy effects but with wavevector k that 
may have any orientation. These horizontal motions decay at  the purely viscous rate 
exp [ - vk2t]. 

3. Large-Prandtl-number solutions 
If Pr = V / K  9 1, e.g. for water stratified with either common salt (Pr = 800) or heat 

(Pr = 7.1), then one might expect the purely diffusive decay of density perturbations 
to be much slower than the viscous damping of fluid motions. However, we show here 
that there are an interesting class of solutions in which the density and velocity fields 
are linked so that they both decay together at essentially the density diffusion rate. 

Returning to (7) we see that there are two possibilities: (i) (v- K )  k2 < 2w, giving 
complex roots so that  the Fourier component is a damped but propagating internal 
wave; and (ii) ( V - K )  k2 > 2 w ,  giving real and negative roots so each Fourier 
component just decays in time. In the first case there is a phase difference between 
the density and velocity fields but not in the second. The interesting limiting case 
is (v - K )  k2 9 w where dissipation dominates buoyancy, either because the wavelength 
of the motion, h = 27c/k, is small compared with the lengthscale ( v / N ) i ,  or because 
the wave-vector is almost vertical (kg - k 2 ) .  

Expanding (7) in powers of w / ( v - K )  k2 to second order leads to 
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or 

to lowest order in the inverse of the Prandtl number. Also 

w2 

vk u2 = - v k 2 + T .  

The first root, ul, is of most interest as i t  is much smaller in magnitude than the 
viscous decay rate - vk2 (note u, x - vk2)  : it  consists of two parts, namely diffusive 
decay at the rate - ~ k ,  and the new term w2/vk2 .  Note that the second part of - u1 
is an increasing function of N but, perhaps unexpectedly, a decreasing function of 
viscosity and wavenumber. This solution represents a slow creeping motion where 
buoyancy forces are balanced by viscous forces. Increasing the viscous forces ( vk2)  
decreases the rate a t  which potential energy is released from the perturbation density 
field. The solution (10) can be obtained directly from ( 5 )  by making a zero- 
Reynolds-number approximation, that  is to  say neglecting the (inertial) time- 
derivative term in ( l ) ,  which leads to 

For any given wavenumber k the smallest value of w2/vk2 will occur for nearly 
vertical wave-vectors. As time increases, the flow field will be dominated more and 
more by almost-horizontal motion in flat cells of far greater horizontal than vertical 
extent. (As is, in fact, observed in experiments as described in $ 5 . )  The horizontal 
velocities are much larger than the vertical velocities in such a motion. This can be 
seen by computing, say, 6 assuming zi, has time dependence exp [ul t ] .  Then using 
( l ) ,  ( 2 )  and (8) and assuming k, - k, k, - k,  and putting K = 0 for simplicity 

which will be large for k, 6 k even if N - vk2. 
It can be seen that similar results arise for Pr -g 1 ,  but with v and K reversed in 

(lo), (11) and most subsequent results. However, a difference in this case is that the 
purely viscous terms in (9), which are decoupled from buoyancy effects, now give the 
slowest-decaying part of the solution. 

4. Most slowly decaying mode 

for constant wave-vector angle 8 is given by 
The wavenumber of the most slowly decaying mode is determined from (lo),  and 

k4 = - N2 0 0 8 2  8. 
V K  

whence 

or in terms of the wavelength of the disturbance 
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For modes with this wavelength the two terms in (10) are equal and the decay of 
the density field is due equally to convection and molecular diffusion. Also note that 
we may rewrite (1 2 )  as 

and so ( 1 2 )  is consistent, for large Prandtl number, with the expansion leading to 
(10). 

Equation (13 )  suggests that 1crJ may be made infinitesimally small by taking 0 
arbitrarily close to @. However, this corresponds to disturbances of infinite horizontal 
extent, which is not compatible with either a finite container or the generation of finite 
patches of turbulence in an unbounded fluid. Therefore a realistic estimate of the 
minimum decay rate requires a lower bound to be put on the horizontal wavenumbers 
of the disturbance, say 

k;+ k; 2 12.  (15) 

(The interaction of these quasi-horizontal modes with solid boundaries is analysed 
in Pearson (1981) . )  

It is shown in the appendix that the minimum of value of lvll subject to (15) will 
occur a t  equality 

k;+ k; = 12 ,  
and is given by 

2N212 4 
kmin = (F) , 

so that 
( -crJmin = 1.89Pr-f(vN2Z2)$. 

Note that the vertical wavelength of the most persistent mode is only weakly 
dependent on the Prandtl number (one-sixth power), the stratification and the 
maximum horizontal scale. 

Recently, Ivey & Corcos (1982) have obtained the same result as (16) (see their 
equation ( 1 4 ) )  for the horizontal decay of layers generated by the oscillation of a 
vertical grid in a stably stratified fluid. 

The scaling (14) is the same as that for the thickness of the buoyancy layer that 
can occur on a solid boundary, at an angle 0 to the horizontal, in a stable density 
gradient (see Turner 1973, pp. 243-245). This boundary-layer flow is induced by 
imposing either a constant density difference (Prandtl 1952, p. 422)  or no normal 
density flux (Phillips 1970; Wunsch 1970) a t  the sloping wall. However, the slowly 
decaying modes described here do not represent a stack of buoyancy layers one on 
top of another. Although the scalings are the same, for dimensional reasons, they have 
different underlying physical mechanisms. Our quasi-horizontal motions are driven 
by the potential energy of the system and involve a partial ‘unmixing’ or reduction 
of this potential energy. On the other hand buoyancy layers are driven by molecular 
diffusion and involve a ‘mixing-up’ of the system. 

5. The experiments and comparison of results 
I n  the present experiments the vertical scale of the quasi-horizontal striations 

observed during the final stage of decay was measured from a shadowgraph image 
in a number of different situations. Both salt (Pr = 800) and heat (Pr = 7 . 1 )  were used 
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1 cm 

FIGURE 2. Shadowgraph of slowly decaying quasi-horizontal motions. This photograph was taken 
approximately 2 min after a grid of horizontal bars had been passed vertically through the fluid. 
In this case N = 1.23 s-l. 

to produce stratified water columns, and these were st,irred in a variety of ways. Three 
different tank sizes were used measuring respectively 25.4 x 25.4 cm, 58.4 x 58.4 cm 
and 10.8 x 45.6 cm in cross-section. I n  the first two of these tanks, the turbulence was 
generated by allowing grids composed of square or round bars (1  cm bar width with 
5 cm mesh in the small tank and 2.3 cm bar width with 11.5 cm mesh in the large 
tank) to fall vertically through the fluid in the manner described by Linden (1980). 
In  the other tank the fluid was stirred by 'whisking' i t  with a vertical rod. The density 
gradient was measured before and after each run and the value of the buoyancy 
frequency N (s-l) was computed from the final value, as that  was representative of 
the density field when the striations were present. 

Quantitative information of the size of the striations was obtained by measuring 
their scale from still photographs of the shadowgraph image. An example of the 
quasi-horizontal modes obtained by passing a grid vertically through the fluid with 
an initially constant density gradient is shown on figure 2. The vertical scale was 
determined by counting the number of striations (usually 10-40) over a vertical span 
of 5-10 cm, and so each value represents an average size. 

In  a number of the experiments in the rectangular tank, measurements of the 
thickness of the striations were obtained simultaneously from shadowgraphs through 
the front and the sides of the tank. No differences between the data were observed, 
indicating that the finite pathlength of light through the tank does not bias the 
estimation of the vertical scale of the striations. Since the deflections of light in a 
shadowgraph system are caused by changes in refractive index gradient, it is 
necessary to double the vertical scale obtained in this way in order to  determine the 
mean vertical wavelength h of the density variations. 

The results are summarized in figure 3, which shows h non-dimensionalized by D, 
the length of the diagonal of the tank. If the disturbance scale is limited by the 
maximum scale of the experimental tank then (16) implies that  

I n  figure 3 the straight line represents the theoretical relationship (17). There is 
considerable scatter in the experimental data, but (17) seems to  provide a good 
estimate of the vertical scale of the striations. 
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FIGURE 3. The mean vertical spacing h of the striations plotted against V K / N ~ D ~  on log-log scales. 
Salt stratification: 0, square-bar grid, 0 ,  round-bar grid, D = 35.9 cm; A, square-bar grid, 
D = 82.6 cm; x , square-bar grid, D = 35.9 with initially linear gradient. Heat stratification: ., 
square-bar grid, D = 35.9, +, arbitrary stirring, D = 46.8 cm. The straight line is the predicted 
relationship (17). 

Immediately after the passage of the grid the most-energetic wavenumber of the 
turbulent field probably scales on the mesh size of the grid and not the tank 
dimension. However, during the initial nonlinear phase of motion, stratification acts 
to make the flow more anisotropic, decreasing vertical scales and increasing horizontal 
scales. This can be thought of as the collapse of mixed or partially mixed regions of 
fluid as they spread horizontally at a height corresponding to their density. An 
example of this process is seen in the case of the cross-stream collapse of the wake 
of a body in a horizontal flow (Lin & Pao 1979). 

As long as sufficient energy is put into the turbulence by the grid, this increase 
of maximum horizontal scale continues until limited by the walls of the tank. 

6. Conclusions 
In  this paper we have shown that the final stage of decay of a turbulent mixing 

event in a stable density gradient is described by solutions of the linearized equations 
of motion. We find that for large Prandtl number the most persistent motions are 
almost horizontal and have a short vertical wavelength. The vertical velocity and 
density fluctuations associated with these modes are in phase, and they decay as a 
result of advection and molecular diffusion. The motions are driven by potential 
energy stored in small (vertical) scale fluctuations of the density gradient, which have 
been previously produced by the turbulent event. They provide the mechanism by 
which the isopycnals eventually become horizontal and all motion ceases. 

Since these modes are driven by the density field and are opposed by viscous 
stresses, an increase in the fluid viscosity slows down the release of potential energy. 
However, the motion will persist until all the potential energy is released and so we 
have the (at  first sight paradoxical) result noted in $4 that the decay rate decreases 
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as the viscosity increases. The decay rate as given by (10) is faster than that obtained 
by molecular diffusion alone, as had been noted by Lange (1974) in a discussion of 
his experimental results. 

For an imposed horizontal lengthscale D ,  the vertical wavelength AID of the 
most-persistent mode is predicted to scale on ( w/N2D4)4 .  Experimental measurements 
of AID, under conditions where the turbulence is fairly homogeneous in the horizontal 
and where D is taken to be the size of the container, support this prediction. However, 
the dependence of A on all the parameters is weak and it has not been possible to 
make a test of the scaling law which rules out other possibilities. In  natural situations, 
when the turbulence is produced by, say, the collapse of a mixed region or by the 
breaking of an internal wave, the horizontal scale of the turbulent patch will depend 
upon the early energetic stages of the motion. 

Small-scale density structures have often been found in the stably stratified 
interiors of the oceans. In some circumstances there appears to be no velocity signal 
associated with density perturbation and it has been concluded that the density field 
marks a turbulent event from which the velocity field has decayed (since the Prandtl 
number is greater than unity). This kind of structure has been called ‘fossil 
turbulence’ by oceanographers. The work described here shows that there is a 
velocity perturbation associated with this density field, a t  least until all the 
isopycnals are horizontal. 
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Appendix 
We need to minimize 

subject to the condition 

k: + ki < l2 

Suppose k ; + k i  = c2,  a constant, then (A 1)  becomes 

N2c2 
v(c2 + ki)2 ’ 

( - a1) = K ( c 2  + k i )  + 

Differentiating (A 1)  with respect to k,, we find that the minimum value is given by 

which on substituting into (A 3) gives 
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which is a monotonically increasing function of c. Therefore the minimum value of 
(A 1 )  subject to (A 2) is for the minimum value of c ,  i.e. k:+ kg = P. Thus 

2N212 4 
kmin = (7) 
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